

Fraunhofer Institute for Applied Optics and Precision Engineering IOF

Yb-doped glass material for laser cooling and high power fibers

Yb-doped glass material for laser cooling and high power fibers

Cover: Laser-active rod (Ytterbium-doped silica glass) during pumping with infrared light.

Top: Production of preforms for active laser fibers on the MCVD system.

Ambition

We provide Yb-doped glass material produced by gas-phase MCVD fabrication for applications fiber laser application.

The background loss and efficiency of that material is close the quantum limits, thus, allowing even for laser cooling.

Application

In the future, advances in solid-state laser cooling may lead to all-optical, compact and vibration-free cryogenic cooling, and as an application, reduce thermal noise in semiconductor-based single-photon detectors or quantum information processing circuits, among others.

Emission- and absorption cross-section of the Yb-doped material.

Characteristics

- Highest purity Yb-doped glass material
- Lowest photodarkening (< 10 dB @ 633 nm)
- > 90% laser efficiency when used in fiber lasers
- Athermal compositions (reduced dn/dT)
- Low-NA and matched NA (∆n < 10-4) to cladding fused silica available

Yb-doped rods without cladding layer.

Technology

- Gas-phase MCVD doping
- Surface Plasma CVD
- Large volumes and preprocessed rods for preforms
- 3D refractive index characterization
- Stress annealing

Contact

Department Laser and Fiber Technology

Head of Department

Dr. Thomas Schreiber Phone: +49 3641 807- 352 thomas.schreiber@ iof.fraunhofer.de

Scientific Group Fiber Technology

Dr. Nicoletta Haarlammert Phone +49 3641 807-334 nicoletta.haarlammert@ iof.fraunhofer.de

Fraunhofer IOF Albert-Einstein-Strasse 7 07745 Jena Germany www.iof.fraunhofer.de

www. more info